Preliminary Exam May 2018

Problem 1. Let $\sigma > 0$. Let $(f_k)_{k \in \mathbb{N}}$ be a sequence of functions $f_k : \mathbb{R} \to \mathbb{R}$ with $f_k(0) = 0$. Moreover let $(A_k)_{k\in\mathbb{N}} \subset [0,\infty)$ be a bounded sequence of real numbers such that

 $|f_k(x) - f_k(y)| \le A_k |x - y|^{\sigma}$ for all $x, y \in \mathbb{R}$.

- (a) Show that there exists $f : \mathbb{R} \to \mathbb{R}$ such that a subsequence f_{k_i} converges uniformly to f in every interval [-a, a], a > 0.
- (b) Show that f satisfies

$$|f(x) - f(y)| \le A|x - y|^{\sigma}$$

where $A = \liminf_{k \to \infty} A_k$.

Problem 2. Prove that if X is a metric space and $f: X \times [0,1] \to \mathbb{R}$ is a continuous function, then $g: X \to \mathbb{R}$, defined by $g(x) = \sup_{t \in [0,1]} f(x,t)$, is continuous.

Problem 3. Prove (using only the material covered in the course) that there is no continuous and one-to-one function $f: \mathbb{R}^2 \to \mathbb{R}$. Hint: Assume that such a function exists and then restrict the function to the unit circle in \mathbb{R}^2 .

Problem 4. Suppose $f : \mathbb{R}^2_+ \to \mathbb{R}$ is a continuous function defined on

$$\mathbb{R}^2_+ = \{ (x, y) : x \in \mathbb{R}, \ y > 0 \}.$$

Assume also that the limits

$$g(u,v) = \lim_{t \to 0} \frac{f((u+t)\cos v, (u+t)\sin v) - f(u\cos v, u\sin v)}{t},$$

and

$$h(u,v) = \lim_{t \to 0} \frac{f(u\cos(v+t)), u\sin(v+t)) - f(u\cos v, u\sin v)}{t}$$

exist and define continuous functions q, h on the domain

 $D = \{(u, v) : u > 0, 0 < v < \pi\}.$

Prove that the function f is differentiable on \mathbb{R}^2_+ .

Problem 5. Let $f \in C^2(\Omega) \cap C^0(\overline{\Omega})$, where $\Omega \subset \mathbb{R}^n$ is open and bounded. Let $\Delta f =$ $\sum_{i=1}^n \partial^2 f/\partial x_i^2$ be the Laplace operator.

- (a) Show that if for some $\varepsilon > 0$ and $x_0 \in \Omega$ we have $\Delta f(x_0) \geq \varepsilon$, then f has no local maximum at x_0 .
- (b) Conclude that if $\Delta f(x) \ge \varepsilon$ for some $\varepsilon > 0$ and all $x \in \Omega$, then we have $\sup_{\Omega} f = \sup_{\partial \Omega} f$.
- (c) Conclude that if $\Delta f(x) \ge 0$ for all $x \in \Omega$, then we have $\sup_{\Omega} f = \sup_{\partial \Omega} f$.

Hint for part (c): Observe that $\Delta |x|^2 = 2n$. Use it to modify a function f in (c) so that you can apply part (b).

Problem 6. For $x = (x_1, x_2) \in \mathbb{R}^2$, let $|x| = \sqrt{x_1^2 + x_2^2}$. Let $D = \{x \in \mathbb{R}^2 : |x| < 1\}$ and let $f:\overline{D}\to\mathbb{R}$ be continuous on \overline{D} . Prove that

$$\lim_{n \to \infty} \iint_D (n+2) |x|^n f(x) \, dA = \int_0^{2\pi} f(\cos t, \sin t) \, dt.$$